<> TechnologyMatch.con

CIl/CD Pipeline Health Checklist

@ Done (Green) Not Done, but Not Critical (Yellow) @ Not Done (Red)

Pipeline Health Checklist

1. Is your build environment fully isolated (e.g., clean containers/VMs per build) to prevent cross-build
contamination and supply chain attacks?

Why it matters: Shared runners or persistent build agents can leak artifacts, secrets, or environment variables
across builds.

® Green Yelow @ Red

2. Are all third-party dependencies (including submodules, libraries, and build tools) pinned to specific,
trusted versions and scanned for vulnerabilities on every pipeline run?

Why it matters: Unpinned dependencies and outdated modules are a top cause of supply chain exploits and
unpredictable builds.

® Green Yellow @ Red

3. Are container images and deployment artifacts signed (e.g., with Cosign, Notary, or Sigstore) and
verified before promotion to production?

Why it matters: Artifact provenance is critical for preventing tampering in multi-stage, multi-team pipelines.

® Green Yelow @ Red

4. Are all secrets and credentials injected into the pipeline at runtime from a secure secrets manager (not
stored in CI/CD tool variables, .env files, or as plaintext in build logs)?

Why it matters: Secrets leaked in logs, configs, or pipeline metadata are a top cause of breaches.

® Green Yelow @ Red

5. Are you using ephemeral, short-lived credentials and tokens for all pipeline actions (including cloud
deploys, artifact pushes, and test runs)?
Why it matters: Long-lived or static credentials are a major risk if the Cl worker or pipeline is ever compromised.

® Green Yellow @ Red

6. Do you enforce least privilege for pipeline service accounts (e.g., separate deploy, test, and read-only
accounts; no broad admin rights)?

Why it matters: Overprivileged CI/CD service accounts can be exploited to pivot throughout your infrastructure.

® Green Yelow @ Red

7. Are all pipeline stages event-driven and stateless, supporting parallelization and horizontal scaling (e.g.,
fan-out for test jobs, parallel environment spin-up)?
Why it matters: Non-parallel or stateful stages become bottlenecks and single points of failure at scale.

® Green Yelow @ Red

8. Are environment configurations, secrets, and infrastructure definitions managed as code and versioned
with strict change controls (e.g., Terraform, Ansible, Helm, Kustomize)?

Why it matters: Manual configuration drift is a top source of “works in dey, fails in prod” issues.

® Green Yelow @ Red

9. Do all pipeline stages emit structured, queryable logs and metrics (e.g., JSON logs, OpenTelemetry
traces, Prometheus metrics) to a central observability platform?

Why it matters: Unstructured or siloed logs make debugging, audit, and compliance nearly impossible.

® Green Yelow @ Red

10. Do you run security scanning (SAST, DAST, container scanning, laC scanning) as first-class pipeline
stages, and enforce blocking policies on high/critical issues?
Why it matters: Security gates that are non-blocking or “report only” quickly become ignored.

® Green Yellow @ Red

11. Are all test failures, deploy errors, and pipeline anomalies automatically ticketed or alerted to
responsible engineers (with context) and tracked to resolution?

Why it matters: Silent failures and unactioned errors undermine pipeline trust and production safety.

® Green Yelow @ Red

12. Are blue/green or canary deployments supported natively, with automated health checks and instant
rollback/roll-forward on failure?

Why it matters: All-or-nothing deploys risk mass outages; safe rollout patterns are essential for reliability.

® Green Yelow @ Red

13. Is every pipeline and deploy action fully auditable (who, what, when, where) and protected by strong
authentication (SSO, MFA) and audit logging?

Why it matters: Weak auth and missing audit trails are a compliance and security disaster.

® Green Yellow @ Red

14. Can you rebuild any environment (including production) from code and pipeline artifacts alone, with no
manual steps required?
Why it matters: True reproducibility is the gold standard for disaster recovery and compliance.

® Green Yelow @ Red

15. Is pipeline performance (queue time, stage duration, flakiness rates) monitored continuously, with
regular retrospective reviews and performance tuning?
Why it matters: Slow, flaky, or unreliable pipelines are ignored by engineers and become bottlenecks.

® Green Yelow @ Red

Top 7 Deep Pipeline Mistakes & Quick Fixes
1. Untrusted or Outdated Third-Party Actions/Plugins

Fix: Audit pipeline plugins/actions monthly. Use only maintained and signed actions. Pin all versions.

2. Secrets Leaked via Logs or Artifacts

Fix: Mask secrets in logs; use tools like git-secrets and truffleHog; regularly rotate all tokens/keys.

3. Non-Deterministic Builds (e.g., “latest” tags, mutable images)

Fix: Use SHA digests or immutable tags for all images and artifacts; fail pipelines on version drift.

4. Pipeline Drift Between Environments

Fix: Enforce single source of truth for laC and config; use GitOps patterns for all environments.

5. CI/CD as a Single Point of Failure

Fix: Run redundant runners, backup CI/CD config/code, and test disaster recovery for your pipeline itself.

6. No Security Review of Pipeline Definitions

Fix: Review pipeline YAML/scripts as part of code review; use tools like Checkov or TFSec for laC.

7. Overly Permissive Network/Cloud Access

Fix: Lock down runner/workload network egress; use private subnets and VPC endpoints for artifact and secrets
access.


http://technologymatch.com/



